XYOM Type Differential Pressure Flowmeter

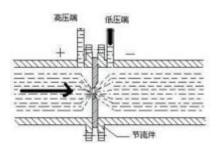
Product Features

- The throttling device is simple, sturdy, and has stable performance.
- Adopting international standards and processing.
- Wide range of applications.
- No need for real flow calibration, it can be put into use.
- The integrated installation is easy.
- Adopting imported monocrystalline silicon intelligent differential pressure sensors.
- Comprehensive self diagnostic function.
- The range of the intelligent differential pressure flowmeter can be self programmed and adjusted.
- The flow integrator can simultaneously display cumulative flow, instantaneous flow, pressure, and temperature.
- In addition to online and dynamic full compensation functions, it also has self diagnosis and self setting range.
- Equipped with multiple communication

Overview

The XYOM differential pressure flowmeter is a high range ratio differential pressure flow device composed of a standard throttling element and a differential pressure transmitter. It is widely used in process control and measurement in fields such as petroleum, chemical, metallurgy, power, heating, and water supply. Differential pressure flowmeter is widely used for flow measurement of gases, vapors, and liquids.

Application


- 1. Nominal diameter: 20mm ≤ DN ≤ 2400mm
- 2. Nominal pressure: PN ≤ 10MPa
- 3. Working temperature: $-50 \,^{\circ}\text{C} \le t \le 550 \,^{\circ}\text{C}$
- 4. Range ratio: 1:3
- 5. Accuracy: Level 1.5

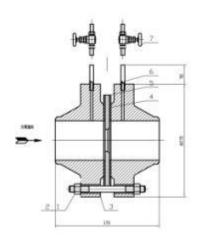
Working principle

As shown in the figure, is to place a throttling element in the pipeline. When fluid flows through the throttling element, a pressure difference (differential pressure P) will be generat ed on both sides of the throttling element. The flow rate is proportional to the square root of the differential pressure, that is:

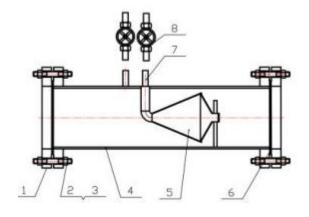
Q v = AC/ sqr(1-
$$\beta$$
4) ϵ d2sqr (Δ P/ ρ)
= $k*(\Delta$ P) 1/2

- A constant;
- C outflow coefficient;
- β diameter ratio (=d/D);
- D aperture of throttle element (mm);
- ε coefficient of expandability;
- △ P Differential pressure before and after the throttle element (Pa);
- P fluid density under working conditions (kg/m3);
- K coefficient.

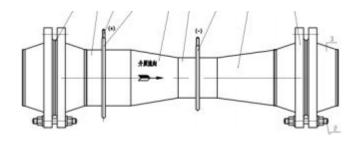
Measurement principle diagram of throttling device

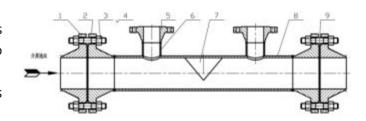

Outline Structure

Throttling components: standard orifice plate, s tandard nozzle, long diameter nozzle, 1/4 circular o rifice plate, etc;


Pressure collection device: ring chamber, press ure collection flange, clamping ring, etc;

Connecting flanges: flanges according to natio nal standards, various standards, and other design departments;


Fasteners, valves, and other accessories.


Schematic diagram of orifice plate throttling component

Schematic diagram of V-cone throttling component

Schematic diagram of Venturi throttling component

Schematic Diagram of Wedge-Shaped Throttling Component

Required Parameters for Selection:

- 1. The diameter of the pipeline (diameter x wall thickness);
- 2. The medium measured by differential pressure flowmeter includes medium related parameters such as density, viscosity,
- 3. The working temperature of the tested medium;
- 4. The working pressure of the tested medium (maximum pressure, minimum pressure, working pressure);
- 5. The working flow rate of the tested medium (maximum flow rate, minimum flow rate, common flow rate).

Selection Guide

XYOM	Differe	ntial Press	ure Flow	meter									
	Code	Classify I	by struct	ural fe	atures	Code		Classify by structural features					
	0	Standard	d orifice p	orifice plate			VC		V-cone				
	V	Venturi	Venturi				N		Spray nozzle				
	W	Wedge					Т		Other				
		Code	Calibe	r (mm)									
		XXXX	20 ~ 2	2400									
			Code	Code Nominal		pressure (MPa)) Code		Nominal pressure (MPa)			
			1.0	1.0	MPa					2.5 MPa 4.0 MPa			
			1.6	1.6	MPa			4.0					
			T (X)	Ot	her X	MPa	1Pa						
				C	ode	Medium		Code	Med	ium	Code	Medium	
					0	Liquid		G	Gas		S	Steam	
						Code	Те	mpera	perature (°C)				
						(X ~ Y) X,	Y Maximum and minimum temperature (°C)					
						Code	Co	mpensa	pensation method				
					Ш	N	No	No compensation					
					ш	Ctp	Те	Temperature and pressure compensation				pensation	
								Code	Material of throttling element				
								0	Carbon steel Stainless steel (note 316, etc.)				
								1					
								Code	Flange material Carbon steel Stainless steel (note 316, etc.)				
								0					
								1					
									Code	Outp	ut		
									Е	4-20mA output			
									R8	RS485 output			
										Co	de	power supply	
										V1		24V DC power supply	
										V2	2	220VAC power suppl	
XYOM	- O -	100 -	2.5 -	S -	Ctp	(0 ~ 165) ℃ - ′	10 -	ER8	- V2	2		

Selection Tips

- 1. Measure the density of the medium in kg/m3, working pressure in MPa, and temperature in °C.
- 2. Flow range: minimum flow, commonly used flow, maximum flow, nominal diameter (mm).
- 3. Usage environment: ambient temperature °C, explosion-proof requirements Power supply: V.